BRIDGE ARCHITECTURE

Architecture without architects does not exist

Architecture without architects does not exist WHY?

Architecture without architects does not exist WHY? Because,

Architecture without architects does not exist WHY? Because,

if it is architecture

Architecture without architects does not exist WHY? Because, if it is architecture architects were involved.

We may look at it the other way around.

We may look at it the other way around. If it is not architecture there were no architects involved.

Do we need architecture?

Do we need architecture? The short version is—

Do we need architecture? The short version is— as you may have guessed

Do we need architecture? The short version is— as you may have guessed YES

What then about bridge architecture?

What then about bridge architecture? What should the bridge engineer do?

What then about bridge architecture? What should the bridge engineer do? Is there an end to all these questions?

What then about bridge architecture? What should the bridge engineer do? Is there an end to all these questions?

NOT REALLY

What then about bridge architecture? What should the bridge engineer do? Is there an end to all these questions? NOT REALLY

But there is a beginning.

But there is a beginning. You should, by now, know the answer.

But there is a beginning.
You should, by now, know the answer.
Team up with an architect.
A bridge architect.

But there is a beginning.
You should, by now, know the answer.
Team up with an architect.
A bridge architect.

WE ARE GETTING TO THE POINT

But there is a beginning. You should, by now, know the answer. Team up with an architect. A bridge architect. WE ARE GETTING TO THE POINT The point of departure for great things to happen.

Collaboration

Collaboration Engineer and architect

Collaboration Engineer and architect Synergy

Collaboration Engineer and architect Synergy What follows is

Collaboration Engineer and architect Synergy What follows is with sincere gratitude

Collaboration Engineer and architect Synergy What follows is with sincere gratitude from D+W

LOCATION

GREAT BELT LINK

Zealand-Funen, Denmark 1988-1998

BRYGGEBROEN (THE QUAY BRIDGE)

Copenhagen, Denmark 2004-2006

ÅBUEN

Copenhagen, Denmark 2005-2008

CYKELSLANGEN (THE BICYCLE SNAKE)

Copenhagen, Denmark 2010-2014

FOLEHAVEN

Valby, Copenhagen, Denmark 2015-

ODENSE PEDESTRIAN BRIDGE

Odense, Denmark 2012

STORSTRØMS BRIDGE

Zealand-Falster, Denmark

2012-

KØGE NORTH STATION

Køge, Denmark 2014UNIVERSITY BRIDGE

Malmö, Sweden

2001-2004

SOFIERO PEDESTRIAN BRIDGE

Sofiero Park, Helsingborg, Sweden

2016-

HISINGS BRIDGE

Gothenburg, Sweden

2013-

POOLE HARBOUR CROSSING

Poole, United Kingdom

1996-1997

DIE ZWEITE HINTERRHEINBRÜCKE

Reichenau, Switzerland

2015-

NEW BRIDGE FOR THE ST. LAWRENCE RIVER

Montreal, Canada

2014-

XIAMEN BICYCLE PATHS

Xiamen, China

2016-

SHENZEN-ZHONGSHAN LINK

Guandong, China

2016-

STONECUTTERS BRIDGE

Hong Kong

2000-2009

BRIDGE TYPE

PEDESTRIAN

SOFIERO PEDESTRIAN BRIDGE Sofiero Park, Helsingborg, Sweden

KØGE NORTH STATION Køge, Denmark

BICYCLE

CYKELSLANGEN (BICYCLE SNAKE) Copenhagen, Denmark

XIAMEN BICYCLE PATHS Xiamen, China

PEDESTRIAN- AND BICYCLE BRIDGES

BRYGGEBROEN (THE QUAY BRIDGE) Copenhagen, Denmark

ÅBUEN Copenhagen, Denmark

ODENSE PEDESTRIAN BRIDGE Odense, Denmark

ROAD- AND RAILROAD BRIDGES

HISINGS BRIDGE Gothenburg, Sweden

MOTORWAY BRIDGES

STONECUTTERS BRIDGE Hong Kong

POOLE HARBOUR CROSSING Poole, United Kingdom

RAILROAD BRIDGES

DIE ZWEITE HINTERRHEINBRÜCKE Reichenau, Switzerland

FIXED LINK

SHENZEN-ZHONGSHAN LINK Guandong, China

GREAT BELT LINK Zealand-Funen, Denmark

STRUCTURAL SYSTEMS

ARCH BRIDGE

ÅBUEN Copenhagen, Denmark

BEAM BRIDGE

KØGE NORTH STATION Køge, Denmark

ODENSE PEDESTRIAN BRIDGE Odense, Denmark

BOX GIRDER BRIDGE

SOFIERO PEDESTRIAN BRIDGE Sofiero Park, Helsingborg, Sweden

CYKELSLANGEN (BICYCLE SNAKE) Copenhagen, Denmark

BRYGGEBROEN (THE QUAY BRIDGE) Copenhagen, Denmark

HISINGS BRIDGE Gothenburg, Sweden

XIAMEN BICYCLE PATHS Xiamen, China

CABLE-STAYED BRIDGE

STONECUTTERS BRIDGE Hong Kong

POOLE HARBOUR CROSSING Poole, United Kingdom

SUSPENSION BRIDGE

SHENZEN-ZHONGSHAN LINK Guandong, China

GREAT BELT LINK Zealand-Funen, Denmark

TROUGH BRIDGE

DIE ZWEITE HINTERRHEINBRÜCKE Reichenau, Switzerland

YEAR

GREAT BELT LINK

Zealand-Funen, Denmark 1988-1998

POOLE HARBOUR CROSSING Poole, United Kingdom 1996-1997

STONECUTTERS BRIDGE Hong Kong 2000-2009

BRYGGEBROEN Copenhagen, Denmark 2004-2006

ÅBUEN Copenhagen, Denmark 2005-2008

CYKELSLANGEN Copenhagen, Denmark 2010-2014

ODENSE PEDESTRIAN BRIDGE Odense, Denmark 2012

HISINGS BRIDGE Gothenburg, Sweden 2013KØGE NORTH STATION Køge, Denmark 2014-

DIE ZEWITE HINTERRHEINBRÜCKE Reichenau, Switzerland 2015-

SOFIERO PEDESTRIAN BRIDGE Sofiero Park, Helsingborg, Sweden 2016-

XIAMEN BICYCLE PATHS Xiamen, China 2016-

SHENZEN-ZHONGSHAN LINK Guandong, China 2016-

Great Belt Link Zealand-Funen, Denmark 1988-1998

Total length: 21 km fixed link 4 motor lanes and 2 railway tracks

Design: 1988

Construction: 1991-1998

Client: AS Storebæltsforbindelsen

Architect: DISSING+WEITING architecture

Engineer: COWI (DK)

Rambøll, Hannemann & Højlund (DK) Landscape: Jørgen Vesterholt (DK)

Awards:

Selected for the Danish Ministry of Culture's Canon of Danish Art and Culture for Architecture, 2006 The European Steel Design Award, 1999 FIP for Outstanding Structures, 1998

POOLE HARBOUR CROSSING

Poole Harbour Crossing Poole, United Kingdom Competition 1996, 1st prize

Cable-stayed bridge Length: 720m

Client: Ministry of Transport, England Architect: DISSING+WEITLING architecture Engineer: Flint & Neill (UK) & Rambøll (DK)

Stonecutters Bridge Hong Kong Competition: 2000, 1st prize

Completed: 2009

Cable-stayed motorway bridge with dual 3 lanes

Total length: 1592m Main span: 1016m

Height of pylons: 290m

Navigation clearance in main span: 73.5m

Client: Hong Kong Highways Department Architect: DISSING+WEITLING architecture

Engineer:

Flint & Neill (UK), Halcrow (UK), SMEDI (China)

SHENZEN- ZHONGSHAN LINK

Shenzen-Zhongshan Link Guandong, China International competition 2016, 1st prize In progress

The world's widest immersed road tunnel Two signature suspension bridges Two artificial islands: 15,000m² conference, office and restaurant facilities

The link's total length: 24 km

Client: The Advanced Work Office for the

Shenzen-Zhongshan Link Project

Architect: DISSING+WEITLING architecture

Engineer: COWI

ODENSE PEDESTRIAN BRIDGE

Odense Pedestrian Bridge Odense, Denmark 2012

Pedestrian- and bicycle bridge

Lenght: 136m Width: 4m - 8.2m

Client: Odense Municipality Architect: DISSING+WEITLING architecture Engineer: schlaich bergermann und partner

Køge North Station Køge, Denmark International competition 2014, 1st prize In progress

Length: 225m Width: 9.5m

Clients:

Banedanmark

Municipality of Køge

Architects:

DISSING+WEITLING architecture

COBE

Engineer: COWI

ÅBUEN

- ① MASSE 200 KG
- ② FJEDER
- (3) LUKKET SEPARAT CYLINDER
- 4 HYDRAULISK DÆMPER
- (5) BUND PÅBOLTET
- 6 KASSE I DRAGER MALET PÅ SIDE MOD DÆMPER

DÆMPERNE FORDELES I LANGSGÅENDE RETNING.

BRYGGEBROEN

Bryggebroen (The Quay Bridge) Copenhagen, Denmark

Completed: 2006

Swing Bridge for pedestrians & cyclists

Length: 190m Width: 5.5m

Clients: The municipality of Copenhagen,

Roads and Parks

Architect: DISSING+WEITLING architecture

Engineer: Carl Bro Group Contractor: Pihl & Søn

Awards:

Certificate of Recognition from the National Capital Beautification Committee (Foreningen til Hovedstadens forskønnelse)

b (4.74) 1

\$ [\$\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1

SECTION - HANDRAILING AND BRIDGE DECK

- 1 PROFILE OF HANDRAILING
- 2 SECTIONAL STEEL
- 3 LED LIGHTING FIXTURE
- 4 ROUND STEEL BAR
- 5 BRIDGE FLOORING
- 6 DECK CONSTRUCTION

ARCHITECTURE

ARCHITECTURE Architecture is not science

ARCHITECTURE Architecture is not science so

ARCHITECTURE Architecture is not science so it may take a bit of convincing

ARCHITECTURE Architecture is not science SO it may take a bit of convincing Hope it worked this time

ARCHITECTURE Architecture is not science SO it may take a bit of convincing Hope it worked this time THE END

PS

PS sorry

The law of gravity applies to all structures

The law of gravity applies to all structures

Engineering is by nature exact,

we assume

The law of gravity applies to all structures Engineering is by nature exact,

we assume

However,

the approach to bridge engineering differs

How can it be so?

How can it be so? Nobel prize quote:

How can it be so?

Nobel prize quote:

"The answer my friend is blowin' in the wind"

How can it be so? Nobel prize quote: "The answer my friend is blowin' in the wind" or, perhaps, just because

How can it be so? Nobel prize quote: "The answer my friend is blowin' in the wind" or, perhaps, just because Dissing+Weitling quote:

How can it be so? Nobel prize quote: "The answer my friend is blowin' in the wind" or, perhaps, just because Dissing+Weitling quote: "That's the beauty of it"

How can it be so? Nobel prize quote: "The answer is blowing in the wind" or, perhaps, just because Dissing+Weitling quote: "That's the beauty of it" MANY THANKS